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ABSTRACT 

Many discrete event simulation (DES) systems have been built using Simkit as 

the underlying infrastructure. Simkit advocates a modeling paradigm where DES 

applications can be rapidly built with simple, independent modules that are assembled in 

a component-like fashion. This modeling paradigm encompasses several modeling 

approaches—active role of events, entities as independent components, and chaining 

components to enable interactivity—that are excellent ways of building a DES system. 

This thesis is inspired by the great work achieved in the mechanisms of the 

underlying infrastructure. Detailed study of the enabling mechanisms and design patterns 

was conducted. Design patterns are proven design solutions that embody best practices of 

software-design concepts; this thesis proposes new design that incorporates suitably 

identified design patterns into the mechanisms of the infrastructure to bring out the 

elegance of design, robustness, and maintainability that heighten the maturity of a 

simulation engine. 

The result of this research work has been a success; several design patterns have 

been identified and incorporated into a new design of the mechanisms behind a 

simulation engine. A DES application that was built for the SEAs project was able to 

switch over to run on the new simulation engine while keeping its business model intact. 
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I. INTRODUCTION  

A. OVERVIEW 

The software industry has probably seen the most fascinating evolution in modern 

human history. Historically, the software application was properly handcrafted by a 

computer scientist using punch cards and queued on a huge mainframe, back in the 

sixties. The first software application the author built was an assembly-language 

subroutine that was submitted as a job to a DEC digital-computer mainframe. Today, a 

software application can easily be generated automatically on the fly through code 

generators and run instantaneously once it has been designed, all on a small laptop. In a 

matter of decades, the advent of technology has enabled software applications to seep 

into our daily life, rendering them indispensable. Software development has matured 

rapidly in diversity. Nevertheless, the satisfaction in getting a new software design to run 

on the laptop never failed to give the software developer a sense of fulfilling joy, just as 

the author was thrilled when that assembly subroutine worked. The computer scientist 

would not be any less elated when that first software application that was handcrafted on 

punch cards crunched successfully. 

The first event-driven simulation application that the author built is the arrival-

process. It is a simple, self-propelling module that exposes the modeling approaches— in 

modeling events, entities, and components—that the Simkit modeling paradigm 

advocates in building a DES system. It portrayed an abstract aspect of a system. Such an 

abstracted view of a system has great implications, as it leads to endless possibilities of 

how a system could be spawned out of this arrival-process. The behavior captured in this 

independent module soon finds itself highly reusable and maintainable, as this 

abstractedness is commonly found across most systems. The event-driven perspective of 

system analysis and the software-development approach encourages simple and 

independent software modules that are loosely coupled to be developed. They become 

easily reusable and an elegant way of building a complete system simply through 

assembling of modules. These are essential qualities in building systems in an object-

oriented fashion. 
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This approach of building simulation applications rapidly is made possible 

through an underlying simulation engine infrastructure. The modeling paradigm of the 

simulation engine framework determines how independent a software module can be 

built. There must be mechanisms of the simulation engine at play to support the 

abstracted view of an independent module to run in a self-propelling fashion. There must 

be other encompassing mechanisms working hand in hand to facilitate the assembly of 

many independent modules to construct a complete system.  

While the abstracted behavior of the arrival process is highly reusable, a robust 

simulation engine is also highly, if not more, reusable and deployable, as the mechanisms 

continue to facilitate new applications to be built rapidly across different domains. As one 

imagines, the software engineering involved in building the simulation engine is more 

abstract and, at times, daunting. However, the satisfaction and challenges in engineering a 

robust and elegant simulation-engine infrastructure that can bring pleasure to application 

developers when their applications run is even more joyful, thrilling, and motivating. 

B. MOTIVATION 

Numerous research works have attempted to conquer the problems of specific 

domains. Their challenges essentially motivate them to dwell on how DES simulation can 

be suitably applied.  

The nature of this research work, however, revolves around framework 

mechanisms and the interworking of these simulation-engine mechanisms in realizing the 

modeling paradigm. One challenge that motivates this work is the relentless drive for 

elegance in the design of these mechanisms. Elegance in the design of a piece of software 

reflects the quality of engineering workmanship just like a piece of art. The appreciation 

and pursuit of elegance in the way mechanisms are created is a motivating challenge. In a 

robust simulation engine, there is an inevitable tussle between elegance and performance. 

While performance holds the key that enables proliferation of the simulation engine, 

elegance holds the key of flexibility, extensibility, and maintainability. The motivation in 

this research work is to reexamine existing design and provide insights on how conflicts 

between performance and elegance may be averted.  
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Unlike other research that broadens the horizon of DES across different domains, 

this thesis delves into the robustness of the mechanism design in the underlying 

simulation engine framework, which eventually compliments other research works that 

broaden the applicability of DES. This research attempts to study new design concepts 

that heighten the maturity of a DES simulation-engine framework infrastructure.  

C. OBJECTIVES 

One avenue where the element of elegance can be injected into system design is 

to incorporate suitably identified design patterns. Design patterns (DPs) are not new 

designs, but proven solutions that have evolved over time. They are particularly suitable 

in mechanism-oriented framework systems.  

The objective of this research work is to study the behavioral characteristics of 

design patterns. Relevant design patterns that are applicable to the simulation-engine 

framework will be identified. A new design that attempts to suitably incorporate design 

patterns into the simulation-engine framework will be proposed. 

A well-structured object-oriented architecture is full of design patterns [1]. This is 

one way by which the quality of a system is judged [1]. The elegance is reflected in the 

way suitably identified design patterns that have been applied, or possibly created, 

produce elegance through simplicity of design, flexibility and modularity in components 

that made up the architecture, and a high level of reusability for the components that 

constitute the architecture. 

D. THESIS ORGANIZATION 

Chapter II conducts literature review on the conceptual paradigm, methodology, 

modeling language, and technology that this research is based on. Chapters III and IV 

present the detailed understanding on the behavioral characteristics of design patterns that 

are relevant and applicable in this work. Chapter V looks at key features of the Java 

framework that have concepts similar to the mechanisms of the simulation-engine 

framework. Analysis of these key features reveals the existence of behavioral 

characteristics of DPs. Chapter VI studies some key modules and mechanisms of the 
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current Simkit simulation-engine framework. The analysis of the behavior established 

resemblances of design pattern. Chapter VII discusses a proposed design that 

incorporates design patterns for those key modules and mechanisms, and empirical tests 

and compatibility of the new design are carried out. Chapter VIII summarizes the 

research carried out in this thesis.  
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II. BACKGROUND 

This chapter focuses on the key elements of the discrete-event paradigm and the 

basic concepts of event-graph methodology. They form the theoretical background of 

Simkit and are the fundamentals of this thesis work. This is followed by a discussion of 

the features of Simkit that this thesis will be looking at. A discussion of the key features 

of UML modeling language is conducted, as this work will be using UML extensively in 

all analysis and design. Finally, a brief description of design patterns as used in this 

research is presented. 

A. DISCRETE EVENT PARADIGM 

Discrete-event simulation describes the modeling of a system over time, where 

the system-state variables change instantaneously at separate points in time [2]. These 

specific points are where events occur. An event, specifically a discrete event, is defined 

as an instantaneous occurrence in the discrete-event model that may change the state of 

the system [2]. Discrete-event models have state trajectories that are piecewise constant 

[3]. These discrete events are the points in time when at least one system-state variable 

changes its value [3]. During an event, simulation time stays constant and unchanged, 

unlike the continuous tickling of real-time clock. In discrete-event simulation, the 

simulation time is an indicator of the occurrence of events. This is the fundamental 

concept on which a discrete event in a discrete-event world is built, and it leads to 

viewing the simulation world entirely from the event’s perspective. This event-oriented 

perspective, combined with the discreteness of events, has resulted in the concept of the 

discrete-event paradigm within the field of modeling and simulation.  

While the discrete-event paradigm is event oriented, it is still the modeling of a 

system over time, particularly simulation time. Only after an event has occurred is 

simulation time updated to the scheduled time in which an event occurred. As such, the 

simulation time of a system advances between the occurrences of events [3]. The idea of 

time advancement, specifically simulation-time advancement, is a vital aspect of the 

system. The simulation’s clock is defined as the variable in a simulation model that gives 
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the current value of simulation time [2]. It is important to be aware that simulation time is 

unrelated to the computational time needed to run a simulation model [2]. The 

simulation’s clock is updated with the simulation time of occurrence of the discrete event. 

In practice, the unit of time for the simulation clock is never stated explicitly in a model 

written in the programming language [2].  

There are basically two approaches to simulation time advancement. One 

approach looks at the advancement of the simulation’s clock according to the time of the 

next executing event [2]. Where there are sparse events in a system or when there is a 

vast difference in the simulation time of occurrence of events, the simulation time will 

make large advancements as events occur. The other approach is a fixed-incremental 

advancement of simulation time [2]. A simulation’s time is advanced periodically at fixed 

interval. Events with a big difference in time of occurrence may need to wait for the 

periodic-time advancement to elapse.  

Both approaches are being adopted in the implementation of discrete-event 

simulation systems. In fact, the latter concept of advancing a fixed increment of 

simulation time is a special case of the former concept [2]. There could be a repetitive 

occurrence of events at fixed or periodic time intervals. As such, the modeling of time 

advancement based on the occurrence of each next executing event is the more generic 

and versatile approach.  

B. EVENT GRAPH METHODOLOGY 

In discrete-event simulation and modeling there are three system-structuring 

approaches [4] or worldviews: activity scanning, process interaction, and event 

scheduling. Graphical representations like block diagrams [5], process networks [6], 

activity wheel charts [7], activity lifecycle diagrams [8], and Petri-net diagrams [9] have 

facilitated the proliferation of activity-scanning and process-interactive worldviews, 

which led in turn to the popularity of process modeling and activity modeling as the more 

common approaches in system analysis. To a certain extent, these two conventional 

approaches have been used to provide analysis of event-driven systems, even though their 

focus revolves around entities and attributes. Unfortunately, the true abstractedness of 
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event analysis in event-oriented systems easily loses focus, defeating the purpose of 

system analysis. The key to facilitating qualitative system analysis is both correct 

recognition of the nature of the system and an apt approach to analysis.  

The event graph, as advocated by Schruben [4] is an attempt to establish a 

graphical technique for visualizing event-oriented system structures. This graphical 

representation is simple in nature and its expression strongly reflects the event-driven 

nature of event-oriented systems. The strength of its simplicity has tremendous value in 

enabling ease of analysis, especially in perceiving the sophistication of event-scheduling 

approaches in discrete-event system simulation [4]. The focus of analysis using event 

graphs revolves around the notions of system events, system-state variables influenced by 

the occurrence of system events, events that determine future events, and events that 

cancel future events. 

In event-graph notation, an event that results in the change of a system-state 

variable is represented as a vertex (single node). The relationship between two events is 

represented by a directed edge (single arc). A directed edge contains informative notation 

that indicates which event schedules or triggers the occurrence of another event, when the 

scheduled or triggered event will occur, and the conditions that bring on the scheduled or 

triggered event.  

Figure 1 illustrates a simple scheduling of events. There are two vertices, event j 

and event k. Event k is scheduled to occur after t time units have elapsed following the 

occurrence of event j. This is provided that condition i is fulfilled at the point when event 

j has completed its execution.  

 

t
( i )

j k

 

Figure 1 Simple Scheduling of an Event (From [4]) 



 8 

The strength of event graphs as a graphical representation lies in the simplicity 

with which they enable a direct focus on the analysis of the set of system events, the 

relationship between these events, when an event will be scheduled, and the condition 

that materializes the relationship. An event may schedule or trigger several other events. 

If so, there will be several arcs out of event j to several other event vertices. An event can 

be instantaneously scheduled, as illustrated in Figure 2. In this case, the time-unit 

notation will be completely omitted, but there could still be condition i, as illustrated in 

Figure 2 that must be fulfilled for event j to be scheduled.  

 

 

Figure 2 Instantaneous Scheduling of an Event 

An event can also be unconditionally scheduled, as illustrated in Figure 3. In this 

case, the conditional notation will be completely omitted but there could still be time-unit 

t, as illustrated in Figure 3 that needs to elapse for event k to be scheduled.  

 

 

Figure 3 Unconditional Scheduling of an Event 

An event can be unconditionally and instantaneously scheduled, as illustrated in 

Figure 4. In this case, both the time-unit notation and conditional notation will be 

omitted. 
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Figure 4 Unconditional, Instantaneous Scheduling of an Event 

An event can schedule itself, as shown in Figure 5. In this case, after t time unit 

has elapsed and condition i is fulfilled, event j will be scheduled to execute again.  

 

 

Figure 5 Self-Scheduling of an Event 

In event-graph methodology, while an event can be scheduled, it can also be 

cancelled. Figure 6 presents an event-graph representation showing cancellation of 

events. In this case, event k will be cancelled after t time unit has elapsed following the 

completion of event j, provided that condition i is fulfilled when event j has completed 

execution. The dotted scheduling arc indicates the cancellation of an event. 

 

 

Figure 6 Cancellation of an Event (From: [4]) 
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The graphical representation of the system using event-graph methodology cannot 

be misinterpreted as the program-flow chart of the system. An event graph is a 

representation of system structure that will be used as a preliminary step in top-down 

simulation-model development [4]. The graphical notation of an event graph is simple, 

yet contains enough information for system analysis. Event-graph methodology’s 

representations provide a worldview that facilitates the analysis of event-driven systems 

with the abstractedness of events totally unveiled. 

C. SIMKIT 

Simkit is the discrete-event simulation (DES) engine created by Buss [10] at the 

Naval Postgraduate School. Without a simulation engine in place, an application must 

cater specifically and individually to the design and implementation of when and how a 

model computes—issues that in every application require resolution. However, having 

each application cater to when models compute is reinventing the wheel, because under 

the DES paradigm, they all implement the same conceptual approach. An application that 

addresses how models compute is in fact the focus in developing a unique solution 

fulfilling the requirements an application is built for. A more sensible approach in 

building applications in the domain of DES is to identify a robust simulation engine to 

address when models will compute, while the models focus on how they will compute, so 

as to address the requirement of the problem space. With an underlying simulation engine 

that takes care of the core organization and triggering mechanisms, simulation-

application development by model developers is able to concentrate on software 

modeling of the physics of their domain. 

A robust simulation engine assumes the role of designing and implementing the 

core mechanisms needed to associate all application models in a generic fashion, 

chaining these models altogether, identifying each of them according to their priorities 

without discriminating or distinguishing any specific model, scheduling them, and finally 

triggering them to compute in an orderly and efficient manner. Simkit is one robust 

simulation engine developed for building simulation applications in DES.  
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Simkit is written entirely in the Java programming language. Simkit consists of a 

suite of Java libraries that constitute the discrete-event simulation-engine framework, 

where discrete-event models can be written and developed. Unlike some other simulation 

engines, in which the simulation engine and application models are programmed in 

different languages, Simkit-based applications are developed in the same language that 

the simulation engine is written in. Application-event modeling codes are also written in 

Java, enabling Simkit and Simkit-based applications to be platform independent. Any 

operating system that allows Java Virtual Machine to reside on the host machine will be 

able to support Simkit and its applications. The platform independence of Simkit-based 

applications is tied to the availability of Java Virtual Machine on the host machine. Over 

the years, Simkit has developed a rich set of application-programmer interfaces (APIs) 

for models to interact with. Simkit’s simulation-engine framework provides several 

straightforward mechanisms to allow newly developed application models to be chained 

generically to run as a single discrete-event simulation executable.  

Simkit as a DES simulation engine embraces the event graph as the underlying 

methodology [10], and all the concepts of this methodology have been implemented in 

Simkit. In addition, through the versatility of event graph, Simkit has extended this 

methodology to include additional annotation, augmenting graphical representations to 

include richer information in event scheduling. The following paragraphs will briefly 

highlight the extensions to event graph that have been incorporated in Simkit. 

Event graph methodology has no restrictions on the number of events that can be 

scheduled. In fact, several events can be scheduled simultaneously. In practice, when 

simultaneous events occur, it makes sense to incorporate the notion of priority; events 

with higher priority should occur before other scheduled events. The event graph can 

therefore be extended to include notation of priority levels, which are depicted within a 

circle along the scheduling edge, towards the tail of the scheduling arc, as illustrated in 

Figure 7 where one of the events needs a priority annotation. In this case, once event h 

has completed its execution, three events—i, j, and k—are scheduled simultaneously as  
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unconditional, instantaneous events. The annotation of P1 along the scheduling edge of 

event j indicates that j has a higher priority than event i and k, which have default 

priority. Simkit ensures that j will execute before i and k. 

 

h j

i

k

P1

 

Figure 7 Priority Scheduling of Events 

In the development of an application, inevitably the ability to perform some form 

of data passing among events must be present (that is, beyond the means to schedule 

events at all). This is analogous to the ability to make function calls and the inevitable 

need to pass data into the function call as function parameters. Basic event-graph 

representation reflects the scheduling of events without any representation of data 

passing. This lack has been rectified in Simkit by means of data-passing notation, with 

the data encased in a square along the scheduling edge, towards the tail of the scheduling 

arc [3]. The scheduled event will reflect a corresponding match of the data with the data 

encased in brackets [3]. This is illustrated in Figure 8 with data being passed in 

scheduling another event. In this case, after event j has completed it execution and 

condition i is fulfilled, event k will be scheduled after t time units have elapsed. Data q in 

event j will be set to values of data p [3]. 
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t
( i )

j k ( q )p

 

Figure 8 Data Passing in Scheduling Events 

Event-graph methodology has included the concept of event cancellation, but 

Simkit adds detailed interpretation that works smoothly with extensions and with 

scheduled events that include data passing [3]. Figure 9 shows such a cancellation. In this 

case, after event j has completed execution and condition i is fulfilled, the first occurrence 

of event k whose values of data q matches data p will be removed from the system. If no 

such instance of event k can be found, nothing is removed from the system and nothing 

happens [3]. In the cancellation of events, data p is optional. When there is no data p, 

Simkit identifies the first occurrence of event k with no argument and removes it from the 

system. If no such instance of event k can be found, nothing is removed and nothing 

happens. This interpretation of event cancellation is an extension of the event-graph 

methodology by which Simkit brings a finer level of detail to the concept.  

 

( i )

j k ( q )p

 

Figure 9 Simkit: Cancellation of an Event 

The Simkit DES framework is an implementation of the LEGO [11] framework, 

and as such supports the key concepts of component-based simulation modeling [12]. 

Simkit emphasizes several of these concepts in steering its modeling paradigm towards 

component-based simulation modeling. One key is the definition of a single component 

as a basic, monolithic programming entity [10] that fully encapsulates an independent set 

of event-graph logic [11]. The mechanism of associating components in Simkit 
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underscores that linking these components together is a rapid yet robust approach in 

building larger, more complex systems [11]. The enabling mechanism of Simkit ensures 

the possibility of loose coupling [10] and substantial reusability among components. 

Simkit’s enabling mechanism relies heavily on establishment of a common interface 

among components. The following paragraphs will highlight some key graphical 

representations that Simkit incorporates to steer its modeling paradigm in the direction of 

component-based simulation modeling.  

Each component in Simkit has an independent set of event-graph logic. The 

triggering of events within a component can cause dependency by other components, in 

such a way that a system event occurring in a source component triggers the execution of 

the same kind of event in another dependent or listening component. This is the 

underlying concept of the listener mechanism, in which there is an event-source 

component, an event-listener component, and a line that connects the two with a 

stethoscope-like [12] symbol on the source end. In Figure 10 component A is the event-

source component and component B is the event-listener component. An event in A will 

trigger a similar kind of event in B. The association of these loosely coupled components 

allows the dependent listener, B, to sense (listen to) the triggering of events from source-

component A. Simkit does not limit the number of listeners that can tap a source 

component, or, contrariwise, limit the number of sources a listener can listen to. Nor is 

there anything to prevent a component from adopting a dual role as both source and 

listener. 

 

A B

 

Figure 10 Component-Listener Mechanism  
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For two components to exploit the listener mechanism, strict conformity with the 

exact same kind of system event must be observed by both source and listener. One way 

to support the triggering of a specific event from an event-source component on another 

specific event in the event-listener component, while ensuring the integrity of both, 

would be a mechanism that explicitly wraps the events. This is the concept underlying the 

adapter mechanism, in which there is an event from the source component, an event from 

the listener, and a double line that connects the two with a stethoscope-like near the 

source-component end. This is illustrated in Figure 11 where c is a specific event from 

event-source A and d is a specific event from event-listener B. Occurrence of c will 

trigger event d only.  

c
dA B

 

Figure 11 Component Adapter Mechanism  

Application-model developers using Simkit must know Java, basic concepts in 

event-graph methodology, and Simkit’s event-graph extensions. Simkit’s simulation 

engine is in fact an embodiment of the DES paradigm, with an intricate design that 

emphasizes clean dependency and considerable loose coupling between simulation-

engine libraries and application models. Development can be carried out independent of 

any enhancement that needs to be implemented in the simulation-engine framework.  

D. UML 

The early 1990s saw a surge of interest in the object paradigm, and related 

technologies proliferated. It was also a time when new object-oriented (OO) languages 

were created, such as SmallTalk, Eiffel, C++ and Java. Many object-oriented design 

methodologies and graphical representations emerged, each making its own ingenious 

attempt to embrace and represent the same fundamentals of the OO paradigm [13]. The  
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abundance of these differing notations unfortunately led to much confusion and concern 

about how adoption of the object-oriented paradigm by software developers might be 

impeded as a result. The need for a unified notation was critical.  

In 1997, the Unified Modeling Language (UML) was first formalized as UML 

1.0. Proposed initially by Grady Booch, Ivan Jacobson, and Jim Rumbaugh [13] of 

Rationale Software, UML was a collaborative effort among top industry leaders to 

consolidate the best features of various OO approaches in a vendor-independent, general-

purpose modeling language [14] and notation [13]. Since then, UML has been the de-

facto standard in various domains of the software industry and was adopted by Object 

Management Group (OMG) as a bona-fide industry standard [14] [15] [16]. UML 2.0 

[14] [15] is the current release.  

As the standardized notation in software modeling, UML has raised awareness of 

the value of modeling in dealing with software complexity [13]. UML is a suite of 

notations that attempt to specify, visualize, and document models of software systems, 

including structure and design [17], to represent requirements, relationships, and other 

developmental concepts in software analysis and design, such that the software better 

represents the system modeled. One benefit that UML offers is a common basis for 

understanding and communication among analysts, designers, and coders throughout the 

process of software building, so that ideas can be better conveyed, ambiguities better 

clarified, feasibility better gauged, and contractual delivery timelines better managed.  

UML 2.0 has been revised to address web-based applications and service-oriented 

architectures and to account for the analysis, design, and development phases of large-

scale software systems. UML 2.0 has emerged as a standard for model-driven 

development, which emphasizes models as the primary artifacts of software design [13], 

leaving code generation mostly to abstracting and automating technologies. 

UML has several graphical-representation notations or diagrams that constitute 

the key features of this modeling language. These diagrams fall into two broad 

categories: structural modeling of the system and behavior modeling. Diagrams that  
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belong to structural modeling of systems are class, package, object, component, and 

deployment diagrams [18]. Diagrams belonging to the behavioral modeling of systems 

are use-case, sequence, collaboration, state-chart and activity. 

A class has been defined to describe a set of objects that share the same set of 

specifications, constraints, and semantics [15]. Class diagrams give a static overview of 

the system as they illustrate, all at a glance, relationships among classes [18]. Class 

diagrams capture essentially three relational dynamics—association, aggregation, and 

generalization—among classes in a system. Figure 12 illustrates that Base class is a 

generalization of Derived class; Derived class aggregates Part class; and Derived class is 

associated with Person class. The numbers indicate the multiplicity and cardinality of 

instances of the relationship. 

 

Derived PartPerson
1

1..*

1..*

1..*

Base

name

getName( )

 

Figure 12 Class diagram 

A package is a collection of logically related UML elements [18] and optionally 

provides a namespace for this group of elements [15]. It is common practice to group 

related classes into a common package. Package diagrams capture dependencies among 

packages [18]. Figure 13 illustrates a DB Package that is dependent on a transaction 

package. 
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Figure 13 Package diagram 

An object diagram shows the instances of the classes that each belongs to. This is 

useful in illustrating complicated relationships, e.g., recursive relationships among object 

instances of a class [18]. Figure 14 illustrates an object instance named John that belongs 

to the Person class. 

 

John : Person

 

Figure 14 Object Diagram 

A component is defined as a code module; a component diagram shows the 

physical analogs of a class diagram [18]. A deployment diagram, the last element in 

structural modeling of a system, shows the physical configurations of software and 

hardware. Figure 15 illustrates two nodes: server and client. The Buyer component, 

deployed on a client node, interfaces with the Seller component, deployed on a server 

node. 
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Figure 15 Deployment Diagram of Components 

A use-case diagram describes the system from an external observer’s point of 

view. The modeling approach in using use-case diagrams is to capture what capabilities 

the system has while intentionally ignoring how the system gets those capabilities 

implemented [18]. It is closely connected to scenarios and the actors enacting in the 

scenarios. Figure 16 shows an Operator actor involved in New Reservation, Modify 

Reservation, and Delete Reservation use cases. 

 

New Reservation

Operator

Modify Reservation

Delete Reservation

 

Figure 16 A Use-Case Diagram 
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A sequence diagram is an interaction diagram that illustrates the operations that 

will take place among objects or classes [18]. There is a notion of the passage of time as 

it illustrates the sequence of interaction among these elements. In Figure 17 the Person 

class incites the Record-Manager class to create a new record. The Record-Manager 

class then creates a record in a sequential manner. The collaboration diagram is another 

form of interaction diagram [18]. The sequence flow in collaboration diagrams, however, 

focuses on the role of objects. There is no restriction to ensure sequential flow of time in 

sequences that link objects. 

 

Person Record Manager

Record

Create New Record

new

 

Figure 17 Sequence Diagram  

UML 2.0 is now a standard for rich modeling features organized as a language-

modeling architecture [13]. Its versatility has led to modularity and a gradual approach to 

adoption. It encourages the user to learn and apply a suitable subset of UML modeling 

features that best support a problem domain, rather than to master the full extent of the 

language. As the experience and knowledge of both the system and modeling language 

grow, rich new capabilities can be harnessed to express intricacies. UML has been 

applied widely in many domains, including direct modeling of software architecture, 

complex system interactions, flow-based application models, business processes, and 

system engineering [13]. The flexibility of the language has seen its applicability across 

many platforms [14], ranging from small, individual software modules to large, complex 

software systems of systems. 
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E. DESIGN PATTERNS 

In computer science, particularly in software engineering, the idea of design 

patterns took off in the late 1990s and was ubiquitously applied across multiple industrial 

domains. Perhaps only a few remember that design patterns actually originated with the 

collecting of architectural concepts pursued by the American architect Christopher 

Alexander, whose field was civilian architecture [19].  

Gamma et al [1] define design patterns as simple and elegant solutions to 

problems in object-oriented software design [1]. Design patterns are, in fact, not newly 

crafted designs for new problems. They are proven solutions that evolved out of 

programming pain and success in the many systems that shaped their existence. A design 

pattern can be considered a general, repeatable solution that can be applied to the 

recognizable, repeatable problems that occur in every new problem space. Design 

patterns are created to record instances of good design in object-oriented software, so 

they can be reapplied rather than rediscovered. They were created in the expectation that 

good design and successful architecture are recyclable. 

Christopher Alexander describes design patterns as follows:  

Each pattern describes a problem which occurs over and over again in our 
environment and then describes the core of the solution to that problem, in 
such a way that you can use this solution a million times over, without 
ever doing it the same way twice [19]. 

A design pattern is not the first few designs created as a software solution. Design 

patterns are a slow outcome, as developers explore rounds and rounds of redesign, 

striving to achieve higher reusability and flexibility. The ability of a solution to be 

applicable time and again in new-yet-familiar situations is what makes a solution a design 

pattern. A design pattern is therefore not a piece of code. One might say that a design 

pattern captures the gist of a solution [1]. Applying apt patterns to problems truly 

transforms object-oriented designs, making them more flexible [1], simple, elegant, and 

optimally reusable. At the analysis phase, applying relevant design patterns can help in 

choosing design alternatives that make a system reusable and avoiding alternatives that 
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compromise reusability [1]. To a certain extent, design patterns may even improve the 

documentation of software systems, and thus be helpful in maintaining existing systems.  

Design patterns are neither specific algorithm designs like a FIFO queue, nor a 

linked list, nor complex, domain-specific designs for an application. Design patterns are 

descriptions of communicating objects and classes [1] that portray a generally reusable 

solution to a design problem. A design pattern abstracts and identifies the key aspects of a 

common design structure and makes it useful for creating a reusable object-oriented 

design [1]. 

The many design patterns that have been documented by the “Gang of Four” [1] 

fall broadly into three categories: creational, structural, and behavioral, according to their 

purpose. It is no surprise that design patterns are applicable as useful solutions for 

different problems among components of the Simkit simulation engine. Simkit’s 

simulation engine is an object-oriented architecture implemented as a DES framework 

that supports the rapid development of DES simulation applications. The introduction of 

design patterns into Simkit design would heighten the maturity of its architecture as a 

DES framework, elevate its elegance in terms of mechanistic simplicity and 

maintainability, and propel the flexibility and reusability of the various core components 

towards optimal reusability. 
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III. CREATIONAL DESIGN PATTERN 

This chapter conducts detailed discussion of two design patterns that belong to the 

creational category. The approach is to focus on the situation that each design pattern 

arises, its applicability and its design structure, to illustrate its characteristics. These two 

design patterns have been suitably applied in the design work of this thesis research.  

A. FACTORY DESIGN PATTERN 

1. Situation 

In building a software application in an object-oriented fashion from scratch, 

every class instance (object) is instantiated from the respective concrete class that is 

being designed for the application. In building a software application using a (software) 

framework, it is still the responsibility of the framework to instantiate every object from 

the required concrete class. However, a framework would not be aware of the newly 

designed concrete classes that a new application needs, because the framework was 

created a priori. The framework knows, nevertheless, when an object of its respective 

concrete class that the application needs must be instantiated and manages the 

relationship among these objects, while unaware of what concrete classes will ever be 

written. For a framework, a dilemma [1] exists where an unknown specific concrete class 

needs to be contacted to instantiate an object. One way to solve this dilemma would be a 

means to encapsulate the knowledge of which specific concrete class is needed to 

instantiate the object and move this knowledge out of the framework [1]. The need to 

unveil this encapsulated knowledge would be delayed till the point when the object needs 

to be instantiated. This is the situation where the factory design pattern was meant to 

provide a solution to the dilemma that the framework encounters. 

2. Intent  

The intent of using a factory design pattern is to define an interface—the factory 

method—that instantiates an object. The factory provides the means to defer as it 

delegates the subclasses—which encapsulate the required knowledge away from the 
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framework—to decide which specific concrete class actually instantiates an object [1]. 

This design pattern is applicable in situations where there is no means to anticipate the 

specific concrete class to instantiate objects beforehand. There arises a need to localize 

and delegate this responsibility to subclasses that will be able to carry out the task duly at 

runtime. It is also applicable when subclasses are the concrete classes that can instantiate 

object while an abstract class could not. It is useful when the subclasses are required to 

specify which specific object to instantiate. 

3. Design Structure 

The basic design of classes of the factory design pattern is illustrated in Figure 18. 

The BaseClass and Client classes are abstract classes of the framework. BaseClass is the 

factory class. The framework defined the means whereby Client would contact BaseClass 

when an object needs to be created, as illustrated by the dotted arrow that points into 

BaseClass. CreateObjectOfRequiredClass is the factory method—the interface—that 

encapsulates the required knowledge away from the framework. The subclasses, AClass 

and BClass, are the concrete classes that will create each of their respective objects. In 

this design, sub-classifying provides the means to contact specific concrete subclasses to 

create an object when the delayed and delegated action of creating an object needs to take 

place at runtime. 
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Figure 18 Factory Design Pattern Class Diagram (From [20])  

The interaction among these classes in the factory design pattern is illustrated in 

Figure 19. The client will contact the factory method—createObjectOfRequiredClass— 

when it needs to create an object. This interface will delegate it to the rightful concrete 

subclass at runtime, which has the know-how of instantiating the object. 
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Figure 19 Factory-Design-Pattern Interaction Diagram 

B. SINGLETON DESIGN PATTERN 

1. Situation 

A class in object-oriented programming defines the abstract characteristics that 

are common among class instances (objects) instantiated from the same class. These 

objects share the same kind of attributes or properties, and behavior. Each object owns its 

own unique set of attributes or properties while sharing some common class-level 

characteristics. There are, however, situations where there should be one, and only one, 

class instance of a specific class that should exist in the system, and all clients that need 

to contact an object of this class should be directed to the same object throughout the 

system. One approach would be to assign a managerial object the responsibility of 

instantiating the object of this class so that all clients will be able to access this one-and-

only object. Unfortunately, this approach is unable to prevent accidental instantiation of 

an object, and in addition, has inevitably forced every client to be dependent on the 

managerial object. While insisting on the need for “only-one” objects, there is also the 

need for a clean dependency among clients in contacting this common object and 

avoiding accidental instantiations in the system. In this predicament, the design of the 

Singleton pattern evolved. 
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2. Intent 

The intent of using a Singleton design pattern is to create a Singleton class that 

will ensure that there is one, and only one, object that will exist in the system, provide a 

global means of access to this common object, and prevent accidental instantiation. The 

Singleton pattern is applicable in situations where clients throughout the system need a 

common means of access [1]—a publicly available method—to this object. It is also 

applicable in situations where the Singleton class not only takes sole ownership of, and 

responsibility for, instantiating and deleting the common object, but ensures that only the 

Singleton has the ability to instantiate, denying any other possibility of instantiation. 

3. Design Structure 

The basic class design of the Singleton design pattern is illustrated in Figure 20. 

The S class is the Singleton class. The Singleton owns the one-and-only object that it 

instantiates by means of static persistency for the common object and provides a globally 

available method—getSingleton—for all clients to access, as illustrated by the dotted 

arrow pointing into the Singleton S class. The constructor of the Singleton class is not 

available to any client except the Singleton class itself; as a result, no accidental 

instantiation by other clients can take place. The compiler would have caught it.  
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Figure 20 Singleton-Design-Pattern Class Diagram (From: [20])  
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IV. BEHAVIORAL DESIGN PATTERN 

This chapter conducts detailed discussion of two design patterns that belong to the 

behavioral category. The approach is to focus on the situation that gives rise to each 

design pattern, its applicability and its design structure, to illustrate its characteristics. 

These two design patterns have also been suitably applied in the design work of this 

research. 

A. OBSERVER DESIGN PATTERN 

1. Situation 

Most systems have requirements and design [20] that need data to be computed 

and the updated data to be presented in one form or another, whether on display or some 

other medium, or even simultaneously to be reflected and made available to several other 

means that the system supports. In a system where software modules are well organized, 

modules that compute and update data are known as the data source [20] or the subject 

[1] of interest. Modules that display the latest updated data are known as the observers 

[20] [1] of the data source [20] or subject [1]. Observers need to pay attention and 

observe the subject, because the latest update will need to be picked up almost instantly. 

There is a dependency [1] of the observer towards the subject. In this dependency, 

however, there should be no limitation on the number of observers that can observe a 

subject. Similarly there should not be any limitation on the number of subjects that an 

observer can observe. While there is a dependent relationship between a subject and its 

observer, they should not be tightly coupled so as not to reduce their reusability [1].  

One straightforward approach to get the latest updated data is for each observer to 

constantly check and query the subject. This is the “poll” approach. But one can imagine 

the system inefficiency when the subject changes once in a long while, and the many 

observers making multiple checks find disappointingly unchanged information; the 

system becomes bogged down with unfruitful check and query transactions. An 

alternative approach is for the subject to provide notification when it has updated its data. 

This is the “push” approach. An observer establishes its dependency with the subject of 
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interest—and as, and when, there is a change in data, the subject notifies all its observers. 

This second approach is the more elegant and is that which the observer-design pattern is 

based on. 

2. Intent 

The intent of the observer-design pattern is to define and establish a one-to-many 

[1] dependence between the subject and its observers, such that when one object—the 

subject—changes state, all its dependents—the observers—are notified and updated 

automatically in an efficient fashion. The dependency between an observer and its subject 

provides the loose coupling necessary to ensure that each retains reusability. This design 

pattern applies in situations when a change to one object is needed to trigger awareness of 

the change in other objects. The object triggering the change need not know which and 

how many objects are dependent on its change. This design pattern is particularly useful 

when there is a need to ensure loose coupling between objects that are dependent on each 

other. 

3. Design Structure  

The design of classes of the observer design pattern is illustrated in Figure 21. 

Subject and Observer are abstract classes. The dependency of Observer on Subject is 

reflected by the containment relationship that links the subject to its observer. Client 

accesses Subject to request that Observer to be notified of any changes made by the 

subject [20]. This is illustrated by the dotted line into the Subject class. ConcreteObserver 

is the concrete class that is interested in any notification of data updates by the subject. 

ConcreteSubject is the concrete class that houses the data source and assumes the role of 

data updater. In its updates, ConcreteSubject accesses the notification method that will 

inform every interested Observer. 
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Figure 21 Observer Design Pattern Class Diagram (From: [1])  

The interactions among the classes in the observer design pattern are illustrated in 

Figure 22. The Client will make the request to the Subject that there is an interested 

Observer—ConcreteObserver. When the ConcreteSubject effects an update on the data 

source, it notifies the Observer. It is the Subject that will update the ConcreteObserver. In 

fact, there could be as many ConcreteObservers that have established the interest in the 

ConcreteSubject. The Subject in this design pattern assumes the role of responding to as 

many interested Observers. The ConcreteSubject is unaware of and not bothered by who 

and how many interested Observers there are. This design decouples ConcreteSubject 

away from ConcreteObserver, creating a weak coupling for the dependency between 

ConcreteObserver on ConcreteSubject, so that the reusability of both ConcreteObserver 

and ConcreteSubject is not reduced. 
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Figure 22 Observer Design Pattern Interaction Diagram  

B. MEDIATOR DESIGN PATTERN 

1. Situation 

In small systems with only a few objects interacting, it is conventional that each 

object refers directly to other objects that it depends on. The straightforward referencing 

is clean and simple. Reflecting these references on a design document, each line of 

dependency will be readily visible. To reuse a small system module, these few classes 

will be used as is. When a system consists of several classes and many more objects 

interacting, the conventional approach when objects refer to other objects that they 

depend on directly is unfortunately not clean and simple. Direct referencing of objects 

reveals lots of interconnection between objects and the objects they depend on. 

Reflecting this straightforward referencing graphically on a design document would show 

cluttered cobwebs of dependencies. Such a system becomes monolithic [1]. It becomes 

difficult to change the behavior of the system when behavior is distributed among 

straightforward, but complex, interconnected classes and objects. The inter-referencing 

inhibits selected classes of behavior from being reused alone [20]. 

One approach to restoring simplicity would be to find some intermediary object 

that collects and consolidates the dependencies on other objects. This object will be 

dependent in turn only on its intermediary object. Different collections of object 

dependencies can be abstracted, such that each object will have a direct reference or 

dependency on the intermediary object, while the intermediary will be aware of the 



 33 

relevant dependencies among other objects and classes. This is the situation the mediator 

design pattern was created for. A mediator is the intermediary object that encapsulates 

collective behavior and is responsible for coordinating the interactions of a group of 

objects. Every object that needs to reference other objects will be referencing only the 

mediator. The mediator keeps interdependent objects within a group from referring to 

each other directly and explicitly, reducing the interconnectivity of lines of dependencies. 

2. Intent 

The intent of the mediator design pattern is to define an intermediary object—the 

mediator—that encapsulates and addresses how a set of objects will be interacting [1]. 

This design promotes loose coupling, as it discourages objects from referring to each 

other explicitly [1]. Abstracting and encapsulating the dependencies within the mediator, 

this design pattern promotes the flexibility to vary interaction among objects 

independently. In fact, as a third party, the mediator object aggregates referencing to 

other objects such that there is indirect dependency among these objects. This design 

pattern is applicable when an object needs to communicate with other objects in well-

defined yet complex ways. It is useful to apply this design pattern on a seemingly 

unstructured set of interdependencies among objects of a system. With adequate 

abstraction and encapsulation of collective dependency behavior into the mediator, the 

behavior of the system becomes easily customizable as objects and classes become more 

independently reusable. 

3. Design Structure 

The design of classes of the mediator design pattern is illustrated in Figure 23. 

The Colleague abstract class and Mediator abstract class define the single simple and 

clean dependency of a Colleague object on a Mediator object. ConcreteColleague_1 

through ConcreteColleague_n are concrete classes whose objects have 

interdependencies. The ConcreteMediator is a concrete class that aggregates the 

references to all the interdependent concrete classes. An object of the ConcreteMediator 

class will be aware of the dependencies for its respective Colleague object. In this way, 

this design provides the means to flexibly vary the interactivity among objects. While the 
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ConcreteMediator class in this design facilitates the flexibility of defining dependencies 

among objects, ConcreteColleague_1 through ConcreteColleague_n class, each of which 

defines unique behaviors, they are now individually more customizable and 

independently reusable. 

 

Figure 23 Mediator Design Pattern Class Diagram (After: [20])  

The interaction among classes of the mediator design pattern is illustrated in 

Figure 24. With the containment relationship that establishes the dependency of the 

Colleague abstract class on the Mediator abstract class, an object of 

ConcreteColleague_1 would reference its ConcreteMediator object, which would in turn 

reference other objects that the object of ConcreteObject_1 has dependencies on. 

Concrete_Colleague_1 till ConcreteColleague_n are concrete classes whose respective 

objects also have the access to the mediating role of their respective ConcreteMediator 

object. 
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Figure 24 Mediator Design Pattern Interaction Diagram (After: [20])  
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V. JAVA LISTENER MECHANISM 

This chapter looks at two kinds of listener mechanisms in Java. The discussion 

focuses on understanding the concept and design of each Java listener mechanism and 

identifies what design patterns have actually been incorporated. This is helpful in the 

understanding of what and how design patterns have been used while Simkit’s modeling 

paradigm advocates its concept of listener mechanism.   

A. ACTION-LISTENER MECHANISM 

1. Concept 

The action listener is a Java interface for receiving an action event [21], that is, a 

specific kind of event that reflects the occurrence [21] of a component action that the 

Java framework supports. In Java framework, an event is represented by an object that 

gives information about the event and identifies the event source [32]. Event sources are 

often components, models, or any other kind of object that can be an event source [32]. 

An object capable of generating events is the event source, while an object interested in 

the events of an event source is an event listener. An event source can be associated with 

multiple event listeners. Similarly, an event listener can be associated with multiple event 

sources. This many-to-many relationship between event source and event listener is the 

event model concept of Java framework [32]. This model is inherent in each of the 

different kinds of events supported in Java framework, including the action event—event 

source—and its corresponding action listener—event listener. 

A component, specifically the Component class in Java framework, is defined as 

an object that has a graphical representation that can be displayed on the user interface 

(UI) and can interact with the user, capturing user-specific actions [21]. Each action, e.g., 

mouse clicks and keyboard entries, that the UI component accomplishes with the user is a 

component action that is encapsulated in an action-event object. The component is the 

event source of action events. Any object whose class implements the action interface 

will be able to register itself as an action listener with the component that generates 

action events. Whenever a user-specific action occurs, the action-listener object is 



 38 

notified of the user action in the form of an action event. In this way, the action listener is 

given the chance to encapsulate application-specific functionality and behavior in 

response to user-specific actions, through the UI component. In the Java framework, 

there are several UI components that can capture user interactions into an action event. 

They are the Button and List components.  

A class—specifically, an application class—whose objects need to register as 

action listeners will have to define the ActionPerformed method, as specified by the 

action-listener interface. The information in a user-specific action that is captured as an 

action event will be available to the application through this method as a parameter, 

allowing application behavior to respond to user actions as required. This is the 

mechanism that Java framework uses to facilitate the application’s defining behaviors in 

response to user actions.  

2. Design Structure 

The class design in the Java framework that supports the action-listener interface 

is illustrated in Figure 25. The ActionListener interface belongs to the Java.awt package. 

This interface is a subclass of the EventListener interface that belongs to the Java.util 

package. The Button and List are UI Component classes that subclass from Component 

class. These classes are part of the pre-defined set of UI Component classes that Java 

framework has created and grouped under the Java.awt package. The ActionEvent class 

that is a subclass of the AWTEvent class is defined and grouped in Java.awt.event 

package. There is a dependency by the ActionListener interface on this ActionEvent class. 

The Application uses the Java.awt package and implements the ActionListener interface. 

Each event source—the Button and List objects respectively—can be associated with 

many event listeners by ActionListener. The event listener—the Application object—can 

be associated with many event sources—whether Button objects or List objects—

independently. 
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Figure 25 Java Action-Listener Class Diagram 

3. Incorporated Design Patterns 

The mechanisms inside the Java framework make abundant use of interfaces. The 

Java action-listener mechanism discussed earlier has illustrated how its interface is used 

in the design of its mechanism. Although the design of design patterns involved only OO 

classes, by analyzing the behavior of the Java action-listener mechanism and design 

patterns, the presence of design-pattern behavior in action-listener mechanisms can be 

identified. The action-listener mechanism of the Java framework has in fact incorporated 

two design patterns: the observer and the mediator.  
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The analysis of the Java action-listener mechanism where its behavior 

incorporated the observer design pattern is illustrated in Figure 26. In the observer design 

pattern, the concrete observer will establish its link with the concrete subject containing 

the data of interest through an attachment setup process. In Java’s action-listener 

mechanism, the application will also need to establish its link with the UI component 

through the action-listener registration-setup process.  

During runtime, the concrete observer is notified (through its update method) by 

the concrete subject, whenever this subject of interest has an updated data. This behavior 

has its correspondence in the Java action listener where the application’s action listener is 

notified through its ActionPerformed method by UI component Button when a user-

specific action occurred. Both the observer design pattern and the action-listener 

mechanism push out the change to the concrete observers and application, respectively.  

As the concrete subject pushes out notification to its concrete observers, it is 

unaware of the number of concrete observers and independent of each specific concrete 

observer. In similar fashion, the UI component Button is aware neither of the number of 

action listeners it needs to notify nor of the specific action listener it is notifying.  

This relationship has allowed UI components to be developed independently from 

the application, and there is optimal reusability of UI components across different 

applications. The independence of the UI component and the application reflects the 

loose-coupling characteristics that the observer DP advocates between the concrete 

subject and its concrete observers, in order to facilitate independence and ensure high 

reusability.  

Figure 26 illustrates the key classes—Button and Application—and interface—

ActionListener—of the Java action-listener mechanism and the corresponding classes—

Subject, ConcreteSubject, Observer and ConcreteObserver—from the observer design 

pattern that the mechanism has incorporated. Figure 26 also illustrates the relationships 

among the classes that reflect the behavior of the observer design pattern that has been 

identified. 
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Figure 26 Observer Design Pattern in Java Action-Listener Mechanism 

The analysis of the Java action-listener mechanism where its behavior 

incorporates [20] the mediator DP is illustrated in Figure 27. In the mediator pattern, once 

it is set up, each concrete colleague—ConcreteColleague1 and ConcreteColleague2— 

contacts the mediator individually and independently. In the Java action listener, the UI 

components—Button and List—contacts the ActionListener individually and 

independently once the setup is completed. 

The mediator design pattern advocates that an intermediate object will collect and 

consolidate the dependencies among objects that are interdependent on each other. This is 

the design that reduces the interconnectivity among these interdependent objects. In this 

way, only ConcreteMediate is aware of interactions among these interdependent objects. 

ConcreteMediate also has the flexibility to vary the interactivity among objects. This 

behavior can be identified in the design of the Java action-listener mechanism, which 
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advocates that the application define the behavior of how the UI components will be 

affected as a response to different user-specific actions from each UI component. Each 

application has the flexibility to vary the interactivity among interdependent UI 

components. The role of the application collects and consolidates the interactivity among 

dependent UI components.  

Although each UI component may be dependent on other UI components, the 

Application class mediates their dependencies. In this way, Components is loosely 

coupled and independently reusable. This loose coupling reflects the characteristic that 

the mediator design pattern advocates, which discourages direct referencing among 

interdependent objects.  

Figure 27 illustrates the key classes—Component, List, Button and Application—

and the interface—ActionListener—of the action listener and the corresponding classes—

Colleague, ConcreteColleague1, ConcreteColleague2, ConcreteMediator and 

Mediator—of the mediator design pattern the mechanism has incorporated. Figure 27 

also illustrates the relationships among the classes that reflect the behavior of the 

mediator DP. 
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Figure 27 Mediator Design Pattern in Java’s Action-Listener Mechanism 

B. PROPERTY-CHANGE-LISTENER MECHANISM 

1. Concept  

The property-change listener is a Java interface that receives the property-change 

event when the Java bean has been updated. In Java, JavaBeans is defined as a portable, 

platform-independent, component model written in the Java programming language [22]. 

JavaBeans architecture advocates that JavaBeans (“bean” in short) has to be a reusable, 

portable and platform-independent component that can be used in applets, java 

applications, and in building composite component. The JavaBeans specification 

indicates that the dynamic nature of bean will support the use of property sheet or a bean 

customizer, such that bean’s property can be customized and modified in design mode. 

Most Java components are built to meet the JavaBeans specification. All UI components 

in Java framework are beans. In Java, there exist non-UI components that are also beans.  
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They can be discovered, customized, and modified through the property sheet or beans 

customizer. When a change in the property of a bean occurs, a property-change event will 

be created to capture information about the change.  

In JavaBeans architecture, a property change is an event that is created when there 

is a change in the “bounded” or “constrained” property of a Java bean [21]. This event 

contains specific information about the bean: its name, the new value that was updated 

and that resulted in the creation of this event, and the previous value [21]. JavaBeans 

architecture adopts the event model of the Java framework. The bean is the event source. 

It is capable of generating property-change events. The property-change listener is 

interested in receiving property-change events. The many-to-many relationship of the 

event model is inherited in the JavaBeans architecture between the bean and its property- 

change listener.  

A class—namely, the Application class—where the objects are interested in 

receiving the property-change event notification from a Java bean will need to define the 

PropertyChanged method, as specified in the property-change-listener interface. The 

information about the update on the property of the bean will be available to the 

application in the parameter, allowing the application to respond to bean changes. This is 

the mechanism that allows Application to define its behavior in using beans.  

2. Design Structure  

The class design in the JavaBeans architecture that supports property-change 

listeners is illustrated in Figure 28. The PropertyChangeListener interface belongs to the 

Java.beans package. It is a subclass of the EventListener interface from the Java.util 

package. It has a dependency on the PropertyChangeEvent class that resides in the same 

Java.beans package. The application uses the Java.beans package and implements the 

PropertyChangeListener interface. In the Java framework, all UI components are beans. 

There are also non-UI components defined in the Java.awt package. These components 

are the event source. The application is the event listener.  
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Figure 28 Java’s Property-Change-Listener Class  

3. Incorporated Design Pattern 

The behavior of the property-change listener shares familiar behavior with design 

patterns. Analysis of the design and behavior of the property-change listener has 

identified that it has incorporated the observer DP.  

Figure 29 illustrates analysis of where the observer design pattern has been 

incorporated into the property-change-listener mechanism. In the observer DP, the 

concrete observer establishes its link with the concrete subject that contains the data of 

interest through an attachment-setup process. In the property-change mechanism of the 

JavaBeans architecture, the application that implements the PropertyChangeListener 

interface will need to register with the interested Component directly. This sets up the 

object of the Application to receive a property-change event when that Component has an 

update [21]. 
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During runtime, the concrete observer is notified of an updated data by the 

concrete subject, through its update method. In similar fashion, when Component updates 

its property, it notifies Application through its PropertyChange method. Both the 

observer design pattern and the property-change listener mechanism push out the change 

to the concrete observers and application.  

In pushing out notification of change to concrete observers, the concrete subject is 

unaware of the number of concrete observers and independent of any specific concrete 

observer. Similarly, each Component of the JavaBeans architecture is not aware of the 

number of property-change listeners it needs to notify, nor of specific property-change 

listeners.  

The mechanism adopted by the JavaBean architecture allows the bean 

(Components) to be developed independently from the application. In addition to that, the 

JavaBeans specification also addresses reusability, portability, and platform-

independence across applets, applications, and composite-component building. This 

independence between the bean and property-change listeners is possible because of 

loose coupling in the dependency relationship, which is the characteristic the observer DP 

advocates for high reusability of components.  

Figure 29 illustrates the key classes—Component and Application—and 

interface—PropertyChangeListener—of the property-change-listener mechanism and the 

corresponding classes—ConcreteSubject, ConcreteObserver and Observer—from the 

observer DP that the mechanism has incorporated.  
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Figure 29 Observer Design Pattern in Property-Change-Listener Mechanism 
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VI. CURRENT DESIGN PATTERNS IN SIMKIT 

This chapter focuses on design in the random utility package, the intra-component 

and inter-component mechanism of Simkit. The design of key features of each module 

will be illustrated in detail, followed by an analysis of the design implemented. 

A. RANDOM NUMBER  

The use of random variates is common in many applications. In collecting 

statistical results for analysis from multiple simulated runs, the use of reliable random 

variate generators plays an important role. Simkit has a module that makes random 

variates easily available to applications from the framework. This module allows new 

random variates to be implemented to determine the required reliability of the source of 

number generation. This section will look at the design that makes this possible and 

conducts an analysis of the design as implemented in Simkit. 

1. Design 

A common approach most simulation applications adopt is the use of random 

variates in their computational models. There are different characteristics of random-

variate generators. Each random-variate generator has parameters that can create 

variations in a random-number set. An application can build its own random-variate 

generator utility or use a random-variate-generator utility so it can focus on the logic of 

its business model. Applications are more interested in using random variates than how 

these numbers are created.  

Simkit has a suite of useful utilities to support the development of a wide variety 

of simulation applications, including a package for generating different types of random 

variates. This package is used extensively in Simkit-based applications spanning a wide 

range of application domains and is particularly useful when a repetitive simulation run is 

needed for statistical analysis. 
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The way classes are designed in the random package made it one of the 

independent Simkit utilities that support rapid development. Not only is it independent of 

other software packages, it can even be used by non-Simkit Java applications that are 

only interested in harnessing the random-number generation functionality. This supports 

the ease with which this whole package can be replaced. The package contains a rich set 

of different types of random number generators and an extensive variation of random 

variates. The design of classes within this package supports an easy approach in which 

new random-number generators and new random variates for future applications can be 

easily created, customized and expanded. 

In the random package, random-number generators can be created through 

RandomNumberFactory, while random variates can be created through 

RandomVariateFactory. RandomVariateBase provides an abstraction that facilitates 

different variations of random number set to be defined. This is a simple approach where 

different variations of random number sets can be created. RandomVariateFactory in fact 

uses random numbers created from RandomNumberFactory. RandomVariateFactory has 

a dependency on RandomNumberFactory. This is illustrated in Figure 30. It also shows 

that the RandomVariateFactory has a dependency on the RandomVariate interface. This 

interface holds the key signature to which each variation of random number variate has to 

comply. Concrete random-number generators—concrete classes—can be created by 

implementing the RandomVariate interface directly. Another approach would be to 

subclass the RandomVariateBase abstract class. The relationship of the key interfaces and 

top-level abstract class in the random package is illustrated in Figure 30. For a detailed 

list of all the concrete classes and random-number variates that are available, see 

Appendix A. 
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Figure 30 Simkit Random-Package Top-Level Class Diagram 

The interaction that the Client application would conduct in using this random 

package to obtain a random variate is illustrated in Figure 31. The Client will make a 

single contact on the RandomVariateFactory to request for a RandomVariate. A new 

concrete subclass of RandomVariateBase (a concrete random variate) will be created and 

made available to the client. The client is thus equipped with a RandomVariate that will 

generate random numbers directly. The various steps that the RandomVariateFactory 

undertake, as shown in Figure 31 are encapsulated away from the client.  
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Figure 31 Creating Random Variates using Simkit’s Random-Package Sequence 
Diagram 

2. Analysis  

The random package is an easy approach where different characteristics of 

random-number generators can be created and different variations of the same random-

number generator can be created easily. The development of new random-number 

generators and random variates can be carried out independently from the business logic 

of the application model. The flexibility and ease of quickly creating random-number 

generators and random variates allow this utility package to grow over time as it is used 

in a variety of applications.  
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This package also makes requests for random numbers and variates easy, allowing 

client applications to focus on their business logic.  

Within a single process, there is a need for a single managerial object to 

administer a common means whereby random variates will be created and to manage this 

set of random variates. This single point of contact that manages all the random variates 

falls on the RandomVariateFactory. However, the first client that requests a random 

variate potentially incurs a high cost in terms of a long wait while the 

RandomVariateFactory discovers, loads and creates the concrete variate. 

Although the RandomVariateFactory provides a single contact—the getInstance 

method—with which Clients can request for random variate, the name of the method is a 

misnomer. Figure 31 shows that the Client invokes the getInstance method of the 

RandomVariateFactory to request an object from RandomVariate. Unfortunately, the 

name of this method is inclined to suggest that an object of the RandomVariateFactory is 

being requested. 

B. INTRA-COMPONENT EVENT SCHEDULING 

A component in Simkit is independent because it has a set of self-contained event 

logic within the component itself. This is made possible through the mechanisms that 

facilitate intra-component event scheduling. This section of the chapter will look at the 

design of the mechanism that make this possible and conduct an analysis of this design 

that has been implemented in Simkit. 

1. Design 

In the discrete-event paradigm, the system is perceived as modeling system-state 

trajectories at the discrete occurrence of events. A running discrete-event simulation 

system is the continuous scheduling and execution of discrete events that propel its 

simulation execution over time. The modeling of a discrete-event system will need to 

define its own system-state variables and its set of events where these system-state 

trajectories will occur in the application.  
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Each application is different in the business logic of when its events will occur 

and the computational logic of system-state trajectories in each event. How an event 

should be scheduled and how the scheduled event should be triggered should be 

unanimous across all discrete-event systems. These are best addressed through a discrete-

event simulation engine framework that will define the modeling paradigm and the 

underlying mechanism in scheduling and triggering events. System modeling by the 

applications will be able to leverage such a framework as they focus solely on their 

business logic, according to the requirements of their problem space.  

Simkit is a discrete-simulation-engine framework that supports rapid development 

of a discrete-event-simulation application. At heart, the simulation engine defines 

mechanisms to support the scheduling of events and the triggering of scheduled events. 

An event—SimEvent—is an object that contains essential information about when this 

event is scheduled to occur, the data values that correspond to the arguments of this 

event, and the name of the event itself. Application modeling will schedule an event 

while Simkit ensures the creation of events and an ordered triggering of events scheduled. 

In triggering a scheduled event, the appropriate entry point of an entity will be triggered. 

An entity is an object whose class houses all event-execution logic. The event execution 

logic defines the behavior of the entity and is distributed among the methods of the 

entity’s class. Each method—with a predefined prefix—where the business and 

computation logic resides is the entry point of a corresponding event. An entity in Simkit 

is an independent component in which all the required events and event-execution logic 

reside—intra-component—and all the methods of entity’s class. This is the modeling 

paradigm of the Simkit framework.  

Figure 32 illustrates the classes of the simkit package that enable the modeling 

paradigm of Simkit framework. An entity’s class—Application Derived Sim Entity—will 

be a subclass of the SimEntityBase abstract class. This abstract class provides the 

mechanism to resolve the entry point that corresponds to each triggered event. An event 

will be scheduled by the entity of the Application Derived Sim Entity class. The 

mechanism of creating and scheduling a SimEvent resides in the BasicSimEntity abstract  
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class. The SimEntity interface binds the entity to the event-triggering mechanism. The 

Schedule manages the state of the simulation run. The EventList is the contact point to 

schedule an event and also ensures ordered triggering of all scheduled events.  

 

 

Figure 32 Simkit Event Scheduling Class Diagram 

Figure 33 illustrates the interaction between the entity of the Application Derived 

Sim Entity class and the classes from simkit package and the mechanism that supports 

event scheduling. The business logic of the Application Derived Sim Entity will access 

the waitDelay method of the BasicSimEntity abstract class to schedule an event. A 

SimEvent will be created and added into the list of scheduled events in EventList. The 

corresponding cancellation of scheduled event is in Appendix B. 
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Figure 33 Event Scheduling Sequence Diagram 

Figure 34 illustrates the mechanism in Simkit where an event is triggered. The 

first event will be removed—popFirstEvent—from the ordered event list. The SimEntity 

will be retrieved from the SimEvent. The interface acted as the abstraction where the 

SimEntityBase will be contacted to resolve the appropriate entry point on the Application 

Derived Sim Entity that corresponds to the event being triggered. 
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Figure 34 Event Triggering-Sequence Diagram 



 57 

2. Analysis  

A study of the class diagram in Figure 32 showed that the SimEntity is an 

interface that is well deployed in this design. This interface binds the event-triggering 

mechanism of the simulation engine to the entity, yet it elegantly decouples the 

simulation engine away from knowing the specific entity’s class.  

There is a Schedule class as shown in Figure 32. The name, “Schedule,” indicates 

that this class has the role of scheduling and triggering every scheduled event. However, 

the class’s role is only to take care of the state of the simulation system. The role of 

scheduling and triggering of events falls on EventList. In addition to these two roles, 

EventList stores and orders all scheduled events. It does seem that this class has been 

loaded with multiple roles and responsibilities. Future expansion on any functionality of 

this class will require painstaking effort.  

In the modeling paradigm, using Simkit event execution has three distinct 

portions: retrieval, triggering, and execution. The entity (Application Derived Sim Entity) 

assumes the role of event execution as the computational logic of system state trajectories 

resides in the methods of Application Derived Sim Entity class. Simkit assumes the other 

two roles, of retrieving and triggering an event. Figure 34 showed that the entity 

(SimEntityBase) itself is retrieved from SimEvent. SimEntityBase then proceeds to resolve 

the entry point of the entity. It becomes apparent that SimEvent is a passive placeholder 

of the occurrence of an event, while SimEntityBase has an active role in the event 

triggering mechanism. 

C. INTER-COMPONENT EVENT SCHEDULING  

Independent components in Simkit can be combined to build larger, more 

complex system. This is made possible by the mechanism that facilitates chained 

interactivity of event scheduling across the components assembled. This section will look 

at the design that makes this possible and analyzes its implementation in Simkit. 
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1. Design  

The modeling paradigm that Simkit advocates has led to the development of 

simulation applications that build entities that are independent components. Each entity 

has its set of event-graph logic. The simulation application has, in fact, comfortably built 

a set of independent components that each can be easily plugged into other applications 

when the component meets requirements. The autonomy of components would have 

elevated the modeling paradigm further if there were some means to link these 

components to effect some chained interactivity.  

The LEGO [11] framework, where each independent component can be linked 

rapidly to build a larger complex system, has been incorporated in Simkit framework. 

Two independent components can be linked together where the event-triggering 

mechanism on the source component can be propagated to trigger events on the listening 

component. This is a simple high-level understanding on how the component-listener 

mechanism works. LEGO [11] framework allowed as many listening components as 

required to link to a source component. A component assumes duality as a listener on 

some components and as the source component to others. The semantics have been 

described in Chapter II, C. Simkit. The design in Simkit for LEGO [11] framework 

extends the event-triggering mechanism across components—inter-componently—

through the listener mechanism. This is the approach the modeling paradigm Simkit 

adopts towards component-based simulation modeling.  

Figure 35 illustrates the additional class and interfaces in simkit package that 

implements the listener mechanism for the LEGO [11] framework. The SimEventSource 

interface specifies the method (notifyListeners) that the BasicSimEventSource will 

implement to inform all its listener components when a scheduled event has occurred. 

The SimEventListener interface specifies the method (processSimEvent) that the 

SimEntityBase will implement to trigger events as a listening component.  
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Figure 35 Simkit Component-Listener-Class Diagram 

Figure 36 illustrates the interaction between the entity of the Application Derived 

Sim Entity class and the BasicSimEventSource class from simkit package. The entity—

source component—adds a listening component that listens to its triggered event. The 

corresponding removal of a listener component is in Appendix C. 
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Figure 36 Simkit Adding Component Listener Sequence Diagram 

Figure 37 illustrates the mechanism in Simkit where a scheduled event occurred; 

it is propagated to its listener components for event triggering. The event is removed as 

usual. The SimEntity is retrieved from SimEvent. The same interface now acts as the 

abstraction where the BasicSimEventSource will be contacted. The appropriate entry 

point on the Application Derived Sim Entity—listener component—that corresponds to 

the occurring event will be resolved for event execution.  
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Figure 37 Simkit Triggering-Component-Listener-Sequence Diagram 
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2. Analysis 

Two interfaces—SimEventSource for the source component and SimEventListener 

for the listener—are created to capture the different roles in the listener mechanism. It is 

good design to use interfaces to distinguish the dual roles that a component can hold. 

SimEventSource’s interface is implemented by an over-arching BasicSimEventSource 

abstract class while SimEventlistener’s interface is implemented by one of the most-

derived SimEntityBase abstract class. Placing both implementations under a common 

abstract class would have facilitated analysis. 

BasicSimEventSource is a new topmost generalized class in the entity class 

hierarchy. This may seem to suggest that this class has abstracted some fundamental 

functionality. However, the sequence diagram in Figure 37 shows a dependency of this 

topmost generalized abstract class on its derived abstract class. The notifyListener method 

of the BasicSimEntitySource contacts the processSimEvent method of SimEntityBase. 

This dependency is facilitated through the SimEventListener interface’s processSimEvent 

method. Otherwise, there is inverse relationship between the abstract classes.  

The mechanism for event triggering that propagates across each listener 

component uses the processSimEvent method. The mechanism for event triggering for the 

component itself uses the handleSimEvent method. The handleSimEvent method in fact 

uses the processSimEvent method. Event triggering for inter- and intra-component could 

have used one common interface, possibly rendering the SimEventListener interface 

redundant. 

When a scheduled event occurs, separate steps of the event-triggering mechanism 

are carried out intra-componently (Figure 34) followed by inter-componently (Figure 37). 

The significant difference of these two steps lies in the entry point for each event 

execution, since each listener component is distinct from the source component. A means 

to consolidate and execute all these entry points together—perceiving all components 

alike—would have sufficed, achieved with one single step of the event-triggering 

mechanism. 
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D. EVENT MODELING LANGUAGE  

UML is the de-facto modeling language in the software industry. This thesis work 

has used UML extensively in the study of design patterns, Java listener mechanisms, and 

Simkit. UML has a suite of powerful graphical representations that help analyze and 

express software-design artifacts and capture the design relationship and interactivity 

between classes, interfaces and objects.  

Event-graph methodology is a set of graphical representations used to analyze and 

design a DES system from an event-driven perspective. It is a powerful graphical 

representation that helps analyze and design the interactivity of events. Event-driven 

perspective is an abstract form of system analysis that does not have a direct mapping to a 

class, interface, or object. UML diagrams of class, sequence, and activity could have been 

used to represent the interactivity of events. Activity diagrams would have been the best 

UML graphical representation to model event-graph logic. However event-graph 

methodology advocates the means to schedule as well as cancel events. A UML activity 

diagram cannot represent cancellations of events. This inadequacy, coupled with 

considerations in using a class or object or interface, would soon clutter the analysis 

process and eventually loose focus on an event-driven perspective.  

In a Simkit simulation application, events are the central and active elements in 

the analysis and design of a DES. Simkit supports a direct transition from a system’s 

event-graph design into its implementation as the modeling paradigm establishes a 

correspondence of an event to a method (containing the event-execution logic) residing in 

the entity’s class.  

A Simkit component corresponds to an object in UML; events (and their 

interactivity) of a Simkit component form the dynamics of the system, while objects (and 

their methods and interactivity) form the dynamics in UML. It is possible to use a UML 

interaction diagram (either a message-sequence or collaboration diagram) to model the 

interactivity of events, since method is the level of granularity that reflects the 

interactivity of events. Figure 38 shows a UML message-sequence diagram of the event- 
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graph logic of a component. This is when UML is used to match the granularity of an 

event representation and the collaboration diagram is used to reflect the dynamics of the 

component.  

Entity

Enter

Exit

 

Figure 38 UML Message-Sequence Diagram of a Component 

Figure 39 shows the corresponding event-graph representation of the same 

component. Figure 39 is able to presents the dynamics of the component better in terms 

of the possible avenues by which an event can be triggered. This is due to the difference 

in perspectives in the analysis of the dynamics of a component between UML 

collaboration diagrams and event-graph diagrams. Event-graph diagrams, which focus on 

the interactivity of events, provide succinct analysis on the dynamics of the system, 

making it the suitable event-modeling language for a DES. 
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Exit

 

Figure 39 Event-Graph Diagram Of The Same Component 

Both UML and event-graph are useful modeling languages. Understanding the 

strength of the language and the characteristics of the system under analysis lead to the 

right tool for the right job. This thesis work has substantial understanding of both 

modeling languages, and they are used complementarily. UML has been used to analyze 

and design the simulation engine, while the design of the mechanism is an 

implementation of event-graph methodology. 
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VII. PROPOSED DESIGN PATTERNS FOR SIMKIT 

This chapter focuses on a new design for the random-utility package, the intra-

component mechanism, and the inter-component mechanism of Discrete Event 

Simulation Kernel (DESK). Detailed analysis for each module is conducted. The design 

and implementation are illustrated for each module. For the random-utility package, a 

discussion on empirical analysis is conducted. Finally, this chapter looks how the FPPS 

application has been ported over to the DESK to prove the compatibility and 

completeness of the modeling paradigm the DESK has achieved.  

A. RANDOM NUMBER  

The random-number module is an important utility to most Simkit-based 

application. The understanding on the existing design and the analysis of its 

implementation has provided insights on possible new designs. This section looks at a 

proposed design for this module and discusses the implementation in this research work. 

1. Analysis  

In the random package of Simkit, several key roles and their behavior have been 

identified. Understanding the behaviors in the existing design of the random package and 

the study of design patterns reveal that some form of design patterns can be suitably 

applied into this utility package. 

The RandomVariateFactory provides clients a common point of contact in their 

request to create a concrete random variate. There should be only one object of the 

RandomVariateFactory in the system as it manages the set of RandomVariates. The 

presence of a duplicate managerial object will be confusing to clients and, more 

detrimentally, cause inconsistency in the results of repetitive simulation runs. There is 

therefore a need to avoid accidental creation of this managerial object. In this aspect, the 

Singleton DP has behavioral characteristics that fit the needs of the 

RandomVariateFactory managerial object. 
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In applying the Singleton DP, a new random variate factory will be the Singleton 

class—RVFactory Singleton class. As a Singleton class, it will provide global access for 

all clients to the one-and-only managerial object, who manages a common set of random 

variates for the entire system. This is the only object that will accept requests from all 

clients to create RandomVariate. The slt method is a globally accessible method to all 

clients in the system. As the Singleton DP only allows the Singleton class itself to create 

an object of this class, any accidental creation of this managerial object is prevented. The 

design of applying the Singleton DP on RVFactory is illustrated in Figure 40. 

 

 

Figure 40 Applying the Singleton Design Pattern for RVFactory Class Diagram 

The RandomVariate holds the key interface where different random-number 

generators and random variates will be implemented. The design of this interface plays 

the critical role in binding any future client to the existing RandomVariateFactory in its 

request for a random variate that might be written in the future.  
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When a client requests a random variate, the RandomVariateFactory has to 

discover and load the requested concrete random-variate class, create that object, and 

initialize it before it is made available to the client. Figure 31 has shown that there are 

several steps that are involved in creating a concrete random variate. The 

RandomVariateFactory has assumed the role of administering a common approach in 

creating each concrete random-variate object and keeping all the how-to hassle away 

from clients. The role that administers the common creation of RandomVariate also 

caters to any concrete random variates that will be written in the future, while the 

RandomVariateFactory has been built a priori. This analysis of the 

RandomVariateFactory from Simkit’s random package shows behavioral characteristic 

where the factory DPs can be applied suitably in creating concrete random variates. 

Applying factory design patterns, the concrete subclasses are the various concrete 

random-variate classes that will have the know-how of a new concrete random variate. 

The RVFactory provides the mechanism such that knowledge of which concrete random 

variate to create is encapsulated and kept out of the framework mechanism. The need to 

reveal the know-how is delayed till runtime, when the client makes the creation request 

and the RVFactory contacts the specific concrete random variate. The RVFactory is able 

to ensure that each RandomVariate is properly initialized before it is made available to 

the client. The design of classes where the factory DP is applied is illustrated in Figure 

41. 
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Figure 41 Applying Factory Design Pattern for Random Variate Class Diagram 

2. Design and Implementation 

The new design for the random package has incorporated two design patterns. 

The key classes, abstractions, and interfaces are shown in Figure 42. The RVFactory is 

the singleton where all clients will be contacting. It will administer the creation 

mechanism for concrete random variates and maintain the set for the system. The slt 

(Singleton publicly accessible method) is a request for the common managerial object. 

The getRVInstance (get random-variate instance) method is a request for the creation of a 

concrete random variate. This method is the interface that binds, yet decouples, the 

RVFactory that creates concrete random variate from the clients. Both these methods are 

named specifically to avoid ambiguity to the clients in contacting the RVFactory.  

In creating a new random variate, the RVFactory needs to discover, load, create, 

and initialize that object. The first client in the system that requests the creation of a new 

random variate has to pay the cost of delayed time in discovering and loading the new 
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random-variate class. This has led to the consideration of a pre-loading step by each 

concrete random variate when the system starts up. This pre-loading step will register the 

concrete random variate with the RVFactory. During runtime, when a request is made by 

any client, there is no time delay to discover and load the concrete random-variate class 

since it has been registered. This registration has established a dependency by the RVBase 

on the RVFactory. 

 

 

Figure 42 New Random-Package Top-Level Class Diagram 

Figure 43 illustrates the interaction between the concrete random variate 

(DerivedRV), RVBase, and RVFactory in the pre-loading process. At system startup, as 

each concrete random variate registers with the RVFactory the class will be discovered 

and loaded into the system.  
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Register
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    className
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Figure 43 Pre-loading of Random Variate Sequence Diagram 

During runtime, when client requests the creation of a random variate, the 

RVFactory simply instantiate an object from its cache and initializes it accordingly, as 

illustrated in Figure 44.  

 

client
RV

Factory
(Singleton)

getRVInstance
  (
    className
  )   

getRVInstance
  (
    className,
Parameters
  )   

-  retrieve Class from cache
-  instantiate new instance 

 

Figure 44 Creating Random Variate Using New Random-Package Sequence Diagram 
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3. Empirical Analysis 

In experiments, empirical analysis of the runtime performance of the proposed rv 

package, in comparison with the simkit.random package, was conducted.  

In the tests, a total of twenty random variates that are subclasses of the 

RandomVariate abstract class have been created. One object instance of each the 

random.RandomVariate is requested through the simkit.random package. System 

performance is measured in terms of the process computation (CPU) time (in msec) 

consumed in creating these instances.  

Similarly, a total of twenty random variates that are subclasses of the RVBase 

abstract class have been created. One object instance of each rv.RandomVariate is 

requested through the rv package. As the new design in rv package splits up the creation 

process into a pre-loading and a creation step, system performance is measured in terms 

of process computation time that is consumed for the pre-loading and creation steps for 

these instances. 

 simkit.random   rv  

Number of 

RandomVariate 

instances 

 

CPU time (msec) 

  

CPU time (msec) 

 Creation  Pre-loading Creation 

1 15  15 0 

3 16  15 0 

5 16  16 0 

10 31  16 0 

15 46  20 0 

20 52  31 0 

Table 1 Empirical Results of simkit.random Package vs. rv Package 
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The results of empirical tests have shown that applying a design pattern in the rv 

package yields a gain in system performance on the pre-loading step. At runtime, all 

random objects that are requested, including the first object, incurred insignificant 

computation time. 

B. INTRA-COMPONENT EVENT SCHEDULING  

The mechanism of the simulation engine that facilitates intra-component event 

scheduling makes it possible for components to be independent. This section looks at the 

proposed design of a new mechanism that attempts to inject elements of elegance and 

simplicity without compromising component independence. This section examines the 

design of the new mechanism and discusses its implementation in this research work. 

1. Analysis  

An understanding of Simkit and the modeling paradigm that Simkit advocates has 

identified the important role the simulation engine assumes in providing unanimous 

mechanisms to schedule and trigger events. This role facilitates the application modeling 

work’s focus on the problem domain. The modeling paradigm where the entity is an 

independent component that houses all event-execution logic is an elegant concept within 

a discrete-event-simulation framework.   

A close study of the event-triggering mechanism in Figure 34 has revealed that 

when a scheduled event occurs, the event-execution entry point residing in the entity 

(Application Derived Sim Entity) must be resolved before execution can be triggered to 

occur. The triggering of such an entry point is in fact a generic step of method invocation. 

One idea in designing DESK is to abstract and encase this generic step into a single 

atomic object that solely invokes the method. The challenge in this idea is finding the 

means to resolve the entry point of the entity when the event is scheduled. 

This challenge led to the concept of a method callback: encapsulation of a method 

invocation that is the entry point of event execution of an entity. A method-callback 

object executes method invocation as an atomic transaction. With a method-callback 

object, method invocation is now independently decoupled away from the entity itself.  
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An event is still the important component from the event-driven perspective in 

modeling a DES system. The new design in DESK will attempt to elevate the emphasis 

on event in this modeling paradigm. Due consideration is given to entrusting the event to 

assume an active role in the event-triggering mechanism. This is viable when the concept 

of method callback is associated with event. When a scheduled event occurred, the 

associated method callback will directly trigger the event-execution entry point on the 

entity. This association eliminates the dependency of event on entity. An occurring event 

now assumes an active role that encompasses the entire event-triggering mechanism. The 

entity now assumes a more passive role of hosting the system-state variables and 

business-logic behavior. The new design concept in DESK involving method callback 

has defined a finer level of granularity in atomic element of execution, as compared to 

that of an entity. This new design of an active event and its associated method callback is 

in fact a behavioral characteristic where the Observer DP has been applied. The event—

the Subject— actively notifies its method callback—the Observer— when the scheduled 

time of occurrence has arrived—the update call. The design where the method callback 

encases the method invocation is a neat approach of decoupling the Subject away from 

the Observer.   

A scheduler will be designed as the main contact point for scheduling and 

ordering events in order and assuming the role of retrieving scheduled events to occur. 

2. Design and Implementation 

The classes of the new design in DESK are illustrated in Figure 45. There are two 

packages: eb (the event bus) package and the ent (the entity) package. The eb package 

contains the Event class. An Event is associated with a MCB (method-callback). The 

Scheduler is the Singleton that is associated with multiple Events. The ent package 

contains the EntityBase abstract class. This class defines the mechanism of event 

scheduling for Application Derived Sim Entity. The ent package is dependent on the eb 

package. 
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Figure 45 DESK Event Scheduling Class Diagram 

Figure 46 illustrates the interaction of the entity of the Application Derived Sim 

Entity with the new classes of DESK in scheduling an event. The entity uses the 

scheduleEvent method of the EntityBase to schedule an event according to its business 

logic. The MCB corresponding to the scheduled event is retrieved by the EntityBase, 

which is associated to the newly created Event object. Scheduler is contacted to insert the 

scheduled event. The corresponding cancellation of scheduled event is in Appendix B.  
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Application Derived Sim 
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EntityBase Scheduler

scheduleEvent

addToEventMap
insertEvent

Event
new

retrieve MCB

 

Figure 46 DESK Event Scheduling Sequence Diagram 

Figure 47 illustrates the interaction among classes of DESK in handling the event-

triggering mechanism when a scheduled event occurs. After the event is retrieved by the 

Scheduler, the associated MCB will trigger the entry point residing on the Entity directly. 

It illustrates the active role of the event in this new design.  

 

Scheduler Event MCB
Application Derived Sim 

Entity 

popFirstEvent

Tick

Invoke method

Iterative execute

 

Figure 47 DESK Event Triggering Sequence Diagram 
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C. INTER-COMPONENT EVENT SCHEDULING 

The mechanism of the simulation engine that facilitates inter-component event 

scheduling makes it possible to assemble components to build larger complex systems. 

This section looks at a proposed design where the mechanism for intra-component event 

scheduling can be easily extended to support inter-component event scheduling. The 

proposed design of the new mechanism reflects simplicity, extensibility, and maturity in 

the framework. This section will look at the design of this new mechanism and discuss its 

implementation in this research work 

1. Analysis 

The LEGO [11] framework advocates the assembling of ready-made components 

(as is), propagating the event-triggering behavior of a component across other 

components through the component-listener mechanism, to form chained interactivity. 

This conceptual approach of building larger complex system is an excellent way for 

software components to be truly plug-and-play in component-based-simulation modeling. 

The new design in DESK also attempted to incorporate the concepts of LEGO 

[11] framework. One key consideration is that an entity needs to assume a dual role as 

source component and as listener. There is no limitation on the number of listening 

components that can be associated with a source component. One challenge is to devise a 

common event-triggering mechanism for both intra- and inter-component. Just as the 

LEGO [11] concept of building larger complex system is to use a component as is, the 

underlying mechanism in incorporating LEGO concepts into listener mechanisms should 

also use the event-triggering mechanism component as is.  

A close study on the design of classes for DESK in Figure 45 shows that the 

method-callback object is decoupled away from the entity. Figure 47 shows that event 

triggering is carried out by the method callback as an atomic transaction. Propagating the 

event triggering to a component listener essentially requires the listener component’s 

method-callback to execute. The design is easily extended, such that an event—the 

Subject—is associated with many method callbacks—the Observers. When a scheduled 

event occurs, all the method-callbacks—source and listener components alike—are 
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executed. The new design in DESK simply uses the same as-is event-triggering 

mechanism to support the listener mechanism of the LEGO framework. This design also 

shows that applying the Observer DP for the basic mechanism results in a simplistic 

design that supports ease of extensibility. The design where the Observer DP has been 

incorporated is illustrated in Figure 48. 

 

 

Figure 48 Applying Observer DP for Intra- And Inter-Component Class Diagram 

2. Design and Implementation 

The new abstract class—EntityComponent—is illustrated in Figure 49. This class 

contains the mechanism to support establishment of the linkage-source component and its 

listener. Listeners are added into the source component through the 

addComponentListener method. The Event is now associated to many MCB, where each 

MCB belongs to each component. Figure 49 shows that the existing design of DESK for 

intra-component event scheduling is easily extended to support inter-component event 

scheduling. 



 78 

EntityBase

scheduleEvent( )

removeScheduledEvent( )

MCB

Event

Tick( )

Scheduler

handleNextEvent( )

1..*

1

1

1..*

1..*

ApplicationEntity

evt

1

ent

EntityComponent

addComponentListener( )

removeComponentListener

( )

Component Class Diagram

 

Figure 49 DESK Component Listener Class Diagram 

Figure 50 illustrates the interactivity between Application Derived Sim Entity and 

EntityComponent in adding a component listener. EntityComponent will need to retrieve 

the MCB from the component listener. This abstract class consolidates the MCB for each 

event that the source component is capable of scheduling. When an event is scheduled by 

the source component, the consolidated MCBs are associated with the event that it 

creates. The corresponding removal of listener component is in Appendix C. 
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Figure 50 DESK Add-Component Sequence Diagram 

Figure 51 illustrates that when a scheduled event occurs, the single event 

triggering mechanism is carried out. Each MCB that is associated with the Event is 

triggered—source component and listener components alike. 
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Figure 51 DESK Triggering Component Sequence Diagram 
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The design of the EntityComponent abstract class has also encompassed the 

concept of adapter as described in Chapter II, C. Simkit. The implementation is illustrated 

in Appendix C. 

D. DES SIMULATION APPLICATION 

The new design of DESK has implemented some features with compatible 

functionalities in Simkit. The eb and ent packages contain the implementation for the 

modeling paradigm and listener mechanism. An approach to test out the compatibility of 

the implementation in DESK is to use a DES simulation application that was developed 

using Simkit to run on DESK without changing any business logic of the application. The 

Force Protection and Port Security (FPPS) simulation that the author co-developed for the 

Systems Engineering and Analysis Project 11 (SEA-11) and delivered in June 2007 is a 

good application to test for testing the compatibility of the DESK, in terms of the 

completeness of the compatible functionalities that DESK has implemented.  

The FPPS simulation system attempts to address several issues faced by the Port 

of Oakland as regards unknown and impromptu threats. It is a busy port, and its 

vulnerability has a detrimental effect on the economy, both at the national and 

international levels. Much of the effort undertaken consisted of analysis of different kinds 

of threats and an assessment of current assets and levels of readiness, proposing several 

alternatives to improve the readiness of the port and offering cost-effectiveness analysis 

of different solutions. The system identified that terrorist threats would come by sea.  

Figure 52 shows the event-graph that captures the business logic of the FPPS 

simulation application.  
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Figure 52 Event-graph Logic of the FPPS Simulation Application 
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To port a Simkit application over to run on DESK, all components whose class 

subclass from SimEntityBase of the simkit package only needs to switch over to sub-class 

from EntityComponent of the ent package from DESK. All implemented business logic 

of the application will run seamlessly. Figure 53 shows the FPPS application where the 

same business logic runs seamlessly after it has been successfully ported over to run on 

DESK. 

 

Figure 53 FPPS Simulation Application Running on DESK 
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VIII. CONCLUSION 

The research work in this thesis has devoted substantial effort to studying and 

acquiring an adequate understanding of the relevant methodology, modeling language, 

and state-of-the-art technology of DES. A detailed understanding of design patterns has 

helped identify the behavioral characteristics that exist inherently in Java framework and 

Simkit simulation engine. These have similar concepts, but the underlying behavior 

showed different design patterns at play. This has established DP relevance and 

reinforced the fact that design patterns are well-devised solutions that evolve over time.  

In this research, the Simkit random utility was studied. The existing designed was 

re-examined and a new design proposed. The new design—rv package—incorporated 

relevant design patterns whose behavioral characteristics have been suitably identified. 

Empirical testing was conducted to compare and contrast the robustness of both the 

existing and new design. The performance gained of the new design showed how this 

research work has met its objective of incorporating relevant design patterns and tackled 

its challenge of averting the conflict between elegance and performance.  

This work also studied the underlying mechanisms of the Simkit simulation-

engine framework. The features of the modeling paradigm were reviewed in totality and 

the existing mechanism designed re-examined. A design— DESK (eb package and ent 

package) —was proposed, representing a new approach that incorporates a suitably 

identified design pattern in the inter-workings of the mechanisms through the concept of 

method callback. A simpler design was created. The inter-workings of mechanisms are 

more extensible, flexible, and maintainable. The new design showed how this research 

work has pursued the motivating challenge of elegance in mechanism design within the 

simulation-engine framework. The simplicity and elegance of the new design that 

supports the modeling paradigm would certainly elevate the maturity of the simulation-

engine infrastructure. An existing simulation application—FPPS—from the SEA-11 

project was used to demonstrate the compatibility of the new design.  
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This research may be termed a success. The author has gained much insight on 

the modeling paradigm from the framework infrastructure perspective. Grasp of this work 

apparently not only facilitates an understanding of the simulation infrastructure for 

simulation-application developers, but also fosters an appreciation of the simulation 

infrastructure for the “simulationist” working on the internals of the simulation engine. 

The satisfaction the simulationist feels in working within an infrastructure that advocates 

rapid development of a DES system amounts to a joy and fulfillment that is beyond 

thrilling.  

There are many avenues for future research work based on this thesis. One 

direction is other design patterns—identifying their relevance and applicability and 

proposing how they may be introduced into the simulation-engine framework. Simkit has 

a suite of modules, both core and utility packages. Another great opportunity for follow-

on work would be re-investigating some of these modules and proposing how new design 

can add elegance, maturity, and robustness to the simulation engine. 
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APPENDIX A. RANDOM NUMBERS  

A. RANDOM VARIATE CLASSES  

 

Figure 54 Existing Simkit.Random package, All Random-Variate Classes 
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B. RANDOM NUMBER CLASSES  

<<interface>>

RandomNumber

RandomNumber

Factory
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Antithetic

Congruential

 

Figure 55 Existing Simkit.Random Package, Random Numbers 

C. INTERFACES  

 

Figure 56 Existing Simkit.Random Package, All Interfaces 
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D. APPLICATION CODE SAMPLE  

 // Existing Design
 // Using simkit.random package 
 //  runtime request for a random variate
 
 simkit.random.RandomVariate Random01Variate = 
                RandomVariateFactory.getInstance( “var.Random01” );

 

 

  // New Design
  // Using rv package 
  //    
  // Pre-loading step
  RVFactory.slt().preLoad( "var.RV01Derived");

  // runtime request for a random variate
  rv.RandomVariate RV01 = RVFactory.slt().getRVInstance("RV01Derived" );
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APPENDIX B. INTRA-COMPONENT 

A. SIMKIT EVENT CANCELLATION 

Application Derived Sim 
Entity 

BasicSimEntity EventList

interrupt(  )

scheduleEvent
Find Event in 

scheduled event list

 determine matching 
name and parameter 

values to remove 
scheduled event

 

Figure 57 Existing Simkit, Cancellation of Scheduled-Event Sequence Diagram 

B. DESK ENTITY INITIALIZATION 
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Entity 

EntityBase

MCB

Scheduler

Super( )

new

addToEventMap
insertEvent for doRun

postEvent

Event
new

 

Figure 58 New DESK, Entity-Initialization-Routine Sequence Diagram 
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C. DESK EVENT CANCELLATION 

Application Derived Sim 
Entity 

EntityBase Scheduler

removeScheduledEvent

deleteEvent

cancelEvent

retrieve MCB

Event
new

 determine matching 
name and parameter 

values to remove 
scheduled event

 

Figure 59 New DESK, Cancellation-of–Scheduled-Event Sequence Diagram  

 public boolean removeScheduledEvent( String eventName, Object... parameters )
    {
        boolean removeScheduleEventStatus = false;
        List<CallBack> callBackList = null;
       String eventNameSignatureString = createMethodSignatureString( eventName, parameters );
         if( methodCBMap.containsKey( eventNameSignatureString ) )
        {
            callBackList = methodCBMap.get( eventNameSignatureString );
            removeScheduleEventStatus = cancelEvent( eventNameSignatureString, callBackList, parameters );
        }
        return removeScheduleEventStatus;
    }
 protected static boolean cancelEvent( String eventName, List<CallBack> cbList, Object... parameters )
    {
        boolean cancelEventStatus = false;
        DiscreteEvent cancellingEvent = new DiscreteEvent( 
                eventName, 0.0, parameters );
        cancellingEvent.setEventSubscribers( cbList );
        cancelEventStatus = Scheduler.slt().deleteEvent( cancellingEvent );
        return cancelEventStatus;
    }

 

Figure 60 New DESK, Cancellation-of–Scheduled-Event Code Snipplet 
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APPENDIX C. INTER-COMPONENTS  

A. SIMKIT REMOVE-EVENT LISTENER 

Application Derived Sim 
Entity 

BasicSimEventSource

removeSimEventListener

 

Figure 61 Existing Simkit, Remove-Listener-Component Sequence Diagram 

B. DESK REMOVE-EVENT LISTENER 

Application Derived 
Sim Entity 

EntityComponent

removeComponentListener

Find & Remove 
Listener MCB 
From Source 

 

 

Figure 62 New DESK, Remove-Listener-Component Sequence Diagram 
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    public boolean removeComponentListener( EntityBase listener )
    {
        boolean removeListenerStatus = false;
        Set<String> keys = methodCBMap.keySet();
        for( String curEventName  : keys )
        {
            if( inExcludeEventList( curEventName ) )
                continue;
            List<CallBack> curCBList = methodCBMap.get(curEventName);
            CallBack thisCB = curCBList.get( 0 );
            CallBack listenerCB = listener.getCallBack( curEventName );
            if( thisCB.isCompatible( listenerCB ) )
            {
                if( curCBList.contains( listenerCB ))
                {
                    removeListenerStatus =
                        curCBList.remove( listenerCB );
                } 

            }
        }
        return removeListenerStatus;
   }

 

Figure 63 New DESK, Remove-Listener Component Code Snipplet 

C. DESK ADD ADAPTER 

Application Derived 
Sim Entity 

EntityComponent

adapterConnect

Find adaptee MCB
Add to Source 

 
 

 

Figure 64 New DESK, Connect-an-Adaptee-Component Sequence Diagram 
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D. DESK REMOVE ADAPTER 

Application Derived 
Sim Entity 

EntityComponent

adapterDisconnect

Find & Remove 
adaptee MCB 
From Source

 
 

 

Figure 65 New DESK, Remove-an-Adaptee-Component Sequence Diagram 

    public boolean adapterConnect( String sourceEvent, String adapteeEvent, 
            EntityComponent adaptee, Object... params )
    {
        boolean connectionStatus = false;
        String adapteeEventSignatureString = createMethodSignatureString( adapteeEvent, params );
        CallBack adapteeCB = adaptee.getCallBack( adapteeEventSignatureString );
        if( adapteeCB != null )
        {
            List<CallBack> CBList = findCBList( sourceEvent, params );
            if( CBList != null )
            {
                if( !( CBList.contains( adapteeCB ) ) )
                {
                    connectionStatus = CBList.add( adapteeCB );
                }
            }
        }
        return connectionStatus;
    }
    
    public boolean adapterDisconnect( String sourceEvent, String adapteeEvent, EntityComponent adaptee, Object... params )
    {
        boolean disconnectionStatus = false;
        String adapteeEventSignatureString = createMethodSignatureString( adapteeEvent, params );
        CallBack adapteeCB = adaptee.getCallBack( adapteeEventSignatureString );
        if( adapteeCB != null )
        {
          List<CallBack> CBList = findCBList( sourceEvent, params );
          if( CBList != null )
          {
              if( CBList.contains( adapteeCB ) )
              {
                  disconnectionStatus = CBList.remove( adapteeCB );
              }
          }
        }
        return disconnectionStatus;
    }  

Figure 66 New DESK, Adapter Code Snipplet 
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